
Swift by Practical Example
Justin Miller • Mapbox • @incanus77



Introduction
• Mobile lead at Mapbox 

• Eleven years of Swift experience™ 

• Not really :-) 

• But Cocoa, yes; I started with Project Builder in 10.2, pre-Xcode 

• Have shipped three standalone Swift libraries, several 
Objective-C SDKs with Swift compatibility, and Swift test apps 

• So I’ve been an intermediary between Swift coders and real-
world use-cases, as well as been experimenting



Disclaimer

• We’re all new here 

• I may be wrong 

• But I’ve been playing around (and shipping) a 
fair amount 

• caveat emptor



Practical?

• I’m not a computer scientist 

• I’m also not a functional programming adherent 

• I’m a tool builder and tinkerer 

• So I wanted to think about how to present Swift 
in a practical light



Practicality

• I’m going to focus on two overarching topics:  

• Usefulness of Swift in existing projects 

• Usefulness of some of Swift’s features



What is Swift good for…
• … in the context of integration into existing projects? 

• Adding Swift files to Objective-C projects 

• Especially extensions 

• REST service wrappers 

• Command-line utilities 

• Prototyping algorithms, especially visual ones 

• Playgrounds are in a good state these days



What is Swift good for…
• … in the context of language features that can save 

programmers some pain?  

• Type aliases 

• Nested functions 

• Nil coalescing 

• Lazy loading 

• Closures 

• Optional chaining



Integration



Easy Integration

• “[Swift …] uses the Objective-C runtime, 
allowing C, Objective-C, C++ and Swift code to 
run within a single program.” 

• A lot of potential for piecemeal integration 

• You can start Swifting today with just one file

https://en.wikipedia.org/wiki/Swift_(programming_language)

https://en.wikipedia.org/wiki/Swift_(programming_language)


Easy Integration
• You can use Objective-C from Swift 

• But if you already had a Swift app, you probably 
wouldn’t be here 

• But it’s even easier to use Swift from Objective-C 

• Create foo.swift 

• #import “<Target>-Swift.h” 

• That’s it! 













REST Wrappers
• Well-suited to all-in-one file style of Swift 

• We’ve found them easier read by web services folks 

• Essentially three pieces:  

• A request URL constructor (but nice) 

• An NSURLConnection / NSURLSession manager 

• A closure caller and a raw URL provider



Example Web Service
• let service = MyGreatService(foo, bar) 

• Then, three action options:  

• Do things with service.requestURL (e.g. 
AFNetworking) 

• Obtain e.g. service.image (blocking) 

• service.imageWithHandler { image in 
… } (non-blocking)













Command Line Swift (!)

• So, Swift has a REPL (read-eval-print loop) 

• By extension, it also just has /usr/bin/swift 

• Use it like Bash, Ruby, Python, Perl, Node…







Example Uses

• General housekeeping scripts 

• Xcode build phase scripts 

• Great way to start playing with Swift today



Language Features



Type Aliases
• Alias one type to another (obvs) 

• Can be created in local scope 

• Especially great for typed containers 

• This is commonly used in C++ and is a nice 
tradeoff 

• Safe, typed containers, but lower verbosity



Local Scope Type Aliases



Type Aliases

• Also useful when mimicking an existing class 

• Like, say, a custom version of one of Apple's 

• typealias 
MBGeocodeCompletionHandler = 
CLGeocodeCompletionHandler



Nested Functions

• Like type aliases, can be scoped locally 

• Handy for externally non-reusable routines



Nested Functions



Nil Coalescing
• Objective-C & Swift both allow nil values 

• Swift does this through the use of optionals 

• If/else control flow is useful for checking nil for 
assignment purposes 

• Can be shortcutted with the ternary operator 
(borrowed from C) 

• condition ? true expr : false expr;



Nil Coalescing
• Ternary operator exists in Swift, but what about optionals? 

• var bar: AnyObject? = nil 

• … 

• foo = (bar != nil ? bar! : someDefault) 

• Instead:  

• foo = bar ?? someDefault 

• Works like JavaScript’s || operator, except testing nil instead of truth 

• foo = bar || someDefault;



Lazy Loading
• Not creating the overhead of a variable until the first 

time it’s used 

• In Objective-C, we do this with properties backed by 
instance variables (ivars) 

• @property id foo; 

• @synthesize foo=_foo; 

• Later, setup _foo if necessary, but always return it



Lazy Loading

• In Swift, we can get lazy  

• Technically, “lazy stored properties” 

• lazy var foo: AnyObject = …









Closure Paradise

• Closures, a.k.a. blocks, lambdas, callbacks, 
anonymous functions (sorta) 

• “Unified with function pointers” 

• Unlike Objective-C, functions are first-class 
objects, meaning they can be passed 

• Essentially, a way to pass around code in code



Closure Uses

• Great as trailing arguments to functions 

• e.g., Do some heavy lifting work, then call this 
code, kthxbai! 

• I like them for setup of more-than-trivial variables



Closures During Init



“Immediate Closures”
• { … }() 

• You’ll see this in C++ (modern versions) as well 

• You can think of it as calling foo() 

• No arguments 

• foo contains code; so does { … } 

• Do this right now!  

• BTW: does this concept have a name? 



Optional Chaining

• Solves the (pretty common!) problem of having:  

• Optional properties (like a delegate) 

• With optionally-implemented methods 

• That return a variety of types



Optional Chaining



Optional Chaining



Recap
• Swift is easy to start dabbling with piecemeal 

• Easy integration into Objective-C apps 

• REST services 

• Command-line 

• Swift has got some language features that’ll do you good 

• Type aliases & nested functions, including locally 

• Nil coalescing & optional chaining to wrangle nil

• Lazy loading & closures for brevity & efficiency



Discussion 



Thank You! 

• @incanus77 

• justin@mapbox.com 

• https://github.com/mapbox 

• mapbox.com/blog

mailto:justin@mapbox.com
https://github.com/mapbox
http://mapbox.com/blog

